

CONSULTANTS

Fundamental Concepts of Radar

Dr Clive Alabaster & Dr Evan Hughes

White Horse Radar Limited

Copyright ©2016 White Horse Radar Limited

www.whradar.com

Contents

- Basic concepts of radar
- Detection Performance
- Target parameters measurable by a radar
- Primary/secondary radar
- Monostatic, bistatic, multi-static configurations
- Classification of Radars
- Block diagram
- Radar frequency bands
- Atmospheric attenuation
- Comparison of radar with other sensors
- □ Relationship between size, power, range and application

Basic Concept of Radar

1

DIA

Copyright ©2016 White Horse Radar Limited

www.whradar.com

Detection Performance

Bipolar Voltage (pre-detection)

Targets always detected in the presence of *noise*.

□ Probability of detection < 1

□ Probability of false alarm > 0

Pd, Pfa low for high detection threshold

- Pd, Pfa high for low detection threshold
- Good Pd and Pfa is signal to noise ration (SNR) is high
- False alarm rate = number of false alarms per second.

Target Information Available from Radar

- Range
- Range Rate (relative velocity)
- Direction (angle) in azimuth and elevation
- Classification (recognition / identification)

Remember: A radar exists to supply information to something / someone else. Radars are often integrated within a larger system. The information requirements of the recipient dictates the nature of the information required and, even, whether a radar is the best sensor for the job.

Target

Track

Qualities of Radar Data

Detection Capability

Range, Probability of Detection (P_D), Probability of false alarms (P_{FA}) False Alarm rate (FAR). SIGNAL TO NOISE RATIO (SNR)

Accuracy

i.e. the uncertainty/error in the measurement of range, velocity, angle... SIGNAL TO NOISE RATIO (SNR)

Resolution

i.e. the smallest difference between two similar targets (in range, velocity, angle...) which can be measured. FREQUENCY, BANDWIDTH

Ambiguity

Might the target data be ambiguous, what are the complications of overcoming any ambiguities? PRF

Interference

The ability of the radar to operate in adverse conditions of: Jamming, Clutter, Mutual interference...

Primary / Secondary Radar

Primary radar: echo of transmission
Secondary radar: target transponder

Radar Limited

Radar Configurations

Monostatic Radar Range

Radar Configurations

Bistatic Radar Range

Bistatic Radar Examples

Semi-active homing, air-to-air missiles

HF sky-wave OTH radar, Australia

JORN PROJECT RECEIVER SITE, LAVERTON W.A. PIC BY CPL DAVE BROOS, DEFENCE PUBLIC AFFAIRS.

Radar Configurations

Multi-Static Radar

"Passive" Radar

Direct paths and reflected signals compared to obtain angle, range and velocity.

Further Radar Classifications

Frequency Band

Microwave, RF (metric), Wide band, Relationship with application, size, power...

Search / Track

Range, resolution & accuracy considerations of Search and Track, single target tracking (pros & cons), Track-While-Scan, role of the "tracker", Multi-Function radar.

Technique (Waveform & Processing)

Antenna m-scan vs e-scan (AESA), CW, FMCW, Pulsed & Pulsed Doppler (low, medium, high PRF), pulse compression, LPI, monopulse angle tracking, (G)MTI, STAP.

Application

Airborne Early Warning, Fire Control Radar (often airborne), Air Defence Radar (short, medium, long range), Missile seekers, Automotive, Battlefield Surveillance, Weapons Locating Radar, Ground Penetrating Radar, Security, Air Traffic Control, Airport Ground Movement, Weather Radar, Medical.

Radar Block Diagram

Primary, Monostatic Radar

Electro Magnetic Spectrum

Radar Frequency Bands

Atmospheric Attenuation

Sea-level, Air Pressure = 101325 Pa, Temperature = $+15^{\circ}$ C, Water Vapour Density = 7.5 g/m³.

As altitude increases, pressure reduces, water vapour content reduces, temperature tends to reduce all of which causes a reduction in atmospheric attenuation.

Copyright ©2016 White Horse Radar Limited

www.whradar.com

Atmospheric Attenuation

Effects of poor weather, sea-level, + 20 $^{\circ}$ C

Comparison of Radar with other Sensors Advantages of Radar:

- □ Its active nature, which allow it measure range and velocity,
- □ The choice of wavelength, which allows good penetration of the atmosphere and the weather,
- □ Its relatively poor resolution.

These characteristics allow it to be:

- All-weather, day/night,
- Long-range,
- □ Capable of detecting small moving targets, and
- □ Ideal for auto-alarm systems.

Comparison of Radar with other Sensors

Disadvantages of Radar:

- Being active the transmitted signal is liable to interception (location of source, intelligence, counter-measures)
- Unsuitable for imaging purposes, although synthetic aperture radar (SAR) and MMW radars are exceptions to this general principle.

Notwithstanding the these last two, radar is unrivalled in the longto medium-range detection, and is frequently use in this capacity.

Basic Antenna Properties

Antenna Gain – definition

- $Gain = \frac{Power density from directive antenna}{Power density from isotropic radiator}$
- when both fed with same power.

Usually expressed on a decibel scale with respect to an isotropic radiator (dBi)

Peak gain, often referred to simply as gain, occurs along the main beam boresight.

Side Lobes

- An unavoidable feature of any antenna.
- Extend over full spherical angular range.

Copyright ©2016 White Horse Radar Limited

Resolution of Radar Imagery

Low resolution, I-band yacht radar

Synthetic Aperture Radar imag

Synthetic Aperture Radar (SAR)

Copyright ©2016 White Horse Radar Limited

Radar Application vs. Frequency

Role	Range	Frequency	Peak Tx Power	Size (antenna)
ICBM Detection	2000-3000 km	400-500 MHz	5-10 MW	30m building fixed site
Long Range Air Defence	500 km	1.3, 3 GHz	100 kW – 2MW	11m x 7m transportable
Airborne Fire Control	100-200 km	9 – 10 GHz	1 – 10 kW	0.5 – 1m diameter
Battlefield Surveillance	10-20 km	10 – 15 GHz	10 – 100 W	50 cm man portable
Missile Seeker (anti-tank)	1-5 km	35, 94 GHz	100mW – 10W	140 mm diameter

Size Matters

ICBM Detection Radar 400 - 500 MHz, 30 m high, 3000 km range Long range air defence 1.3 GHz, 11 x 7 m, 500 km range

Copyright ©2016 White Horse Radar Limited

Frequency – Size – Range

Airborne Early Warning 3 GHz, 6 m, 400 km range

Airborne Fire Control 10 GHz, 0.8 m, 180 km range

Copyright ©2016 White Horse Radar Limited

Frequency – Size – Range

Short range air defence 35 GHz, 1 m, 10 km range

Active missile seeker 94 GHz, 0.14 m, 2 km range

Copyright ©2016 White Horse Radar Limited

www.whradar.com

Summary

- ✓ We have discussed the basic radar technique.
- ✓ The concepts of detection performance and the limiting effects of noise have been considered and the importance of the SNR has been stressed.
- Radar is a very powerful sensor which can generate useful target data which is usually required by a recipient within a greater system that, in turn, drives the radar specification.
- ✓ Radar has been compared with other sensors which often yield different data to that of radar.
- ✓ Many different radar deployments are possible.
- ✓ Radars may be classified in many ways. These classifications reveal their vast array of techniques and applications.
- \checkmark The main sub-systems of a radar have been identified and their function described.
- ✓ Radar frequency bands have been discussed and the relationship between frequency and atmospheric/weather attenuation, size, power, range and application noted.

ANY QUESTIONS ?